

Transforming the Field of Hematopoietic Stem Cell Therapies

Nasdaq: JSPR

April 28th, 2022

Safe Harbor

Forward-Looking Statements

This investor presentation and any accompanying oral presentation (together, this "Presentation") contain forward-looking statements. All statements other than statements of historical fact contained in this Presentation, including statements regarding the future opportunities and prospects of Jasper Therapeutics, Inc. (together with its subsidiary, "Jasper" or the "Company"), including milestones, business strategy, and plans and objectives for future operations, are forward-looking statements. Jasper has based these forward-looking statements on its estimates and assumptions and its current expectations and projections about future events. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including those contained in the "Risk Factors" section of the Company's Annual Reports on Form 10-K, Quarterly Reports on Form 10-Q and Current Reports on Form 8-K that the Company has filed or may subsequently file with the SEC. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this Presentation are inherently uncertain and may not occur, and actual results could differ materially and adversely *from* those anticipated or implied in the forward-looking statements. Accordingly, you should not rely upon forward-looking statements as predictions of future events. Jasper undertakes no obligation to update publicly or revise any forward-looking statements for any reason after the date of this Presentation or to conform these statements to actual results or to changes in Jasper's expectations.

Industry and Market Data

Certain data in this Presentation was obtained from various external sources, and neither the Company nor its affiliates, advisers or representatives has verified such data with independent sources. Accordingly, neither the Company nor any of its affiliates, advisers or representatives makes any representations as to the accuracy or completeness of that data or undertakes any obligation to update such data after the date of this Presentation. Such data involves risks and uncertainties and is subject to change based on various factors.

Trademarks

The trademarks included herein are the property of the owners thereof and are used for reference purposes only. Such use should not be construed as an endorsement of the products or services of the Company.

Agenda

Time	Topic	Presenter		
1:00 – 1:10	Introduction to Jasper	Ron Martell, President & CEO		
	ISD404 for Transplant Condition	ina		
	JSP191 for Transplant Condition	ing		
1:10 – 1:25	JSP191 Mechanism of Action and Preclinical Review	Wendy Pang, M.D., PhD, SVP Research & Translational Medicine		
1:25 – 1:40	AML/ MDS Phase Ib Study Update & Discussion	Lori Muffly, M.D., Stanford University		
1:40 – 2:00	SCID Phase I/II Update	Judith Shizuru, M.D., PhD, Jasper Co-Founder and Stanford University		
	IODAGA 6 TI ALLI ALLI ALLI ALLI ALLI ALLI ALLI A	D.0		
	JSP191 for Therapeutic Use in M	DS		
2:00 – 2:15	Scientific Rationale for JSP191 in Lower Risk MDS	Wendy Pang, M.D., PhD, SVP Research & Translational Medicine		
2:15 – 2:30	Unmet Need in Lower Risk MDS	David Sallman, M.D., Moffitt Cancer Center		
2:30 – 3:00	Q&A			
2.00 0.00	GO/ I			

Introduction to Jasper

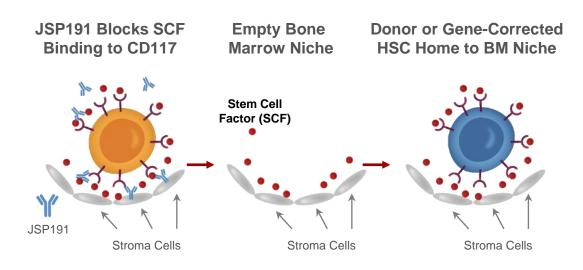
Ron Martell, President & CEO

Jasper Highlights

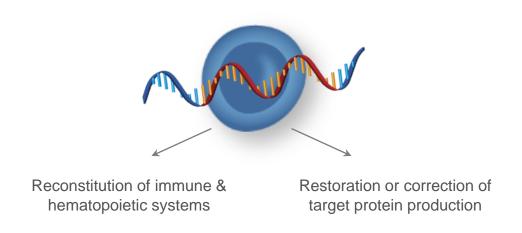
- Science targeting the central role of stem cells to cure a growing number of fatal diseases
- Experienced team in hematopoietic stem cell transplant and drug development

- **JSP191:** First in class, targeted anti-CD117 antibody conditioning agent
- Clinical data in SCID & AML/MDS stem cell transplant
- Registrational AML/MDS stem cell transplant trial targeted for Q1 2023
- New therapeutic study of JSP191 for disease modification in lower risk MDS starting Q4 2022

- Jasper mRNA stem cells: Novel hematopoietic stem cell mRNA platform to expand the curative potential of allogeneic and autologous cellular therapy
- In vivo POC in 2022, potential IND in 2023


- Validating corporate and academic partnerships
- Cash runway through AML/MDS registrational study start

Addressing the major limitations of hematopoietic stem cell transplant


Improving conditioning and grafts by targeting biology unique to the stem cell

JSP191 Anti-CD117 Antibody for targeted **HCT conditioning**

Current HCT conditioning agents are genotoxic, limiting HCT safety and efficacy

mRNA Stem Cell Grafts to Address Current Limitations of Transplant

Current allogeneic and gene therapy grafts associated with graft failure, relapse, GvHD, low protein production

Jasper's Expanding Pipeline

Indication	R&D Partner	Research	Preclinical	Clinical	Anticipated Milestones
JSP191 Conditioning					
Sponsored Studies					
AML/MDS	. lasner				 Registrational trial initiation by Q1 2023
SCID	Jasper THERAPEUTICS INC.				Mid 2023 Phase I/II complete study enrollment
Gene Therapy – Sickle Cell	ARUVANT				2H 2022 first patient enrollment
Gene Therapy – Gaucher Type 1	AVROBIO				2H 2022 first patient enrollment
Gene Therapy – X-SCID	⊕ GRAPHITE BIO				2H 2022 first collaboration data
Investigator Sponsored Studies					
Fanconi Anemia	Stanford University				 2022 patient enrollment ongoing
Sickle Cell Disease	NIH National Heart, Lung, and Blood Institute				2022 patient enrollment
Chronic Granulomatous Disease	National Institute of Allergy and Infectious Diseases				2022 patient enrollment
GATA2 MDS	NIH NATIONAL CANCER INSTITUTE				2022 patient enrollment
JSP191 Therapeutic					
Lower Risk MDS (primary treatment)	Jasper THERAPEUTICS INC.				2H 2022 clinical study initiation
Jasper mRNA Stem Cell Graft Platform					
Thalassemias, Sickle Cell Disease	<u> </u>				2022 – In vivo proof of concept
Autoimmune Diseases	THERAPEUTICS INC.		•		2023 – First IND filing

JSP191 Registration Study

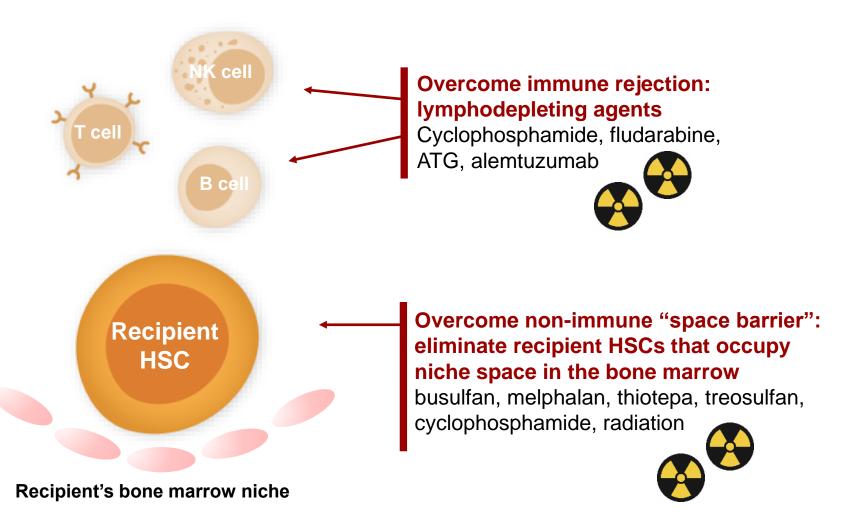
FDA supportive of JSP191 registrational study in AML and MDS patients ineligible for myeloablative conditioning

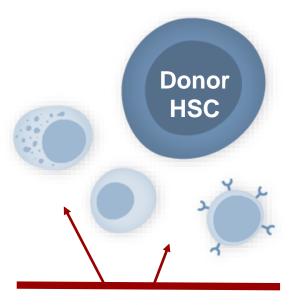
- Recognized need for new minimally toxic regimens with enhanced efficacy in older patients
- No additional studies required

Review of study design including comparator, endpoints and key statistical assumptions

- Jasper to submit registrational study protocol for AML patients
- MDS can be submitted under single protocol or as separate protocol

Jasper plans to initiate registration study by Q1 2023

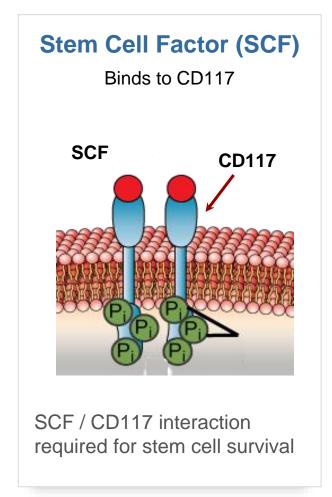


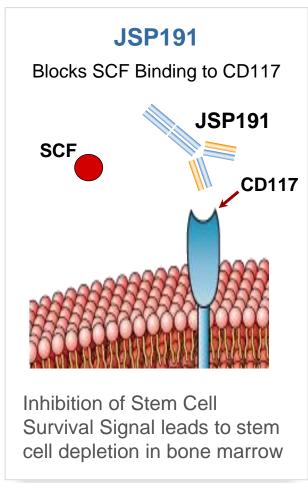


JSP191 Mechanism of Action & Preclinical Review

Wendy Pang, M.D., PhD., SVP Research & Translational Medicine Jasper Therapeutics

What is currently needed to get hematopoietic stem cells (HSCs) to engraft




Donor graft contribution
passenger graft cells
contribute to overcoming
resistance

JSP191 uniquely blocks Stem Cell Factor Receptor (CD117) signaling

Leading to stem cell depletion without significant off-target toxicities

JSP191 blocks CD117 (Stem Cell Factor Receptor) leading to hematopoietic stem and progenitor cell depletion

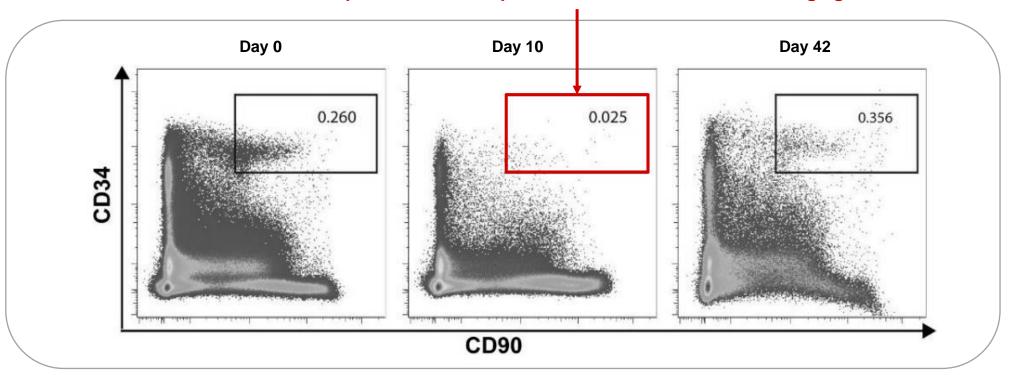
 Synergistic with other stem cell targeting mechanisms (radiation¹, CD47, 5-azacytidine²)

JSP191 designed to minimize off target / safety effects

- Aglycosylated in order to remove effector cell recruitment and mast cell activation
- No mast cell related anaphylaxis
- No reported JSP191 related SAEs

No toxic payload that may lead to depletion of other cells expressing CD117

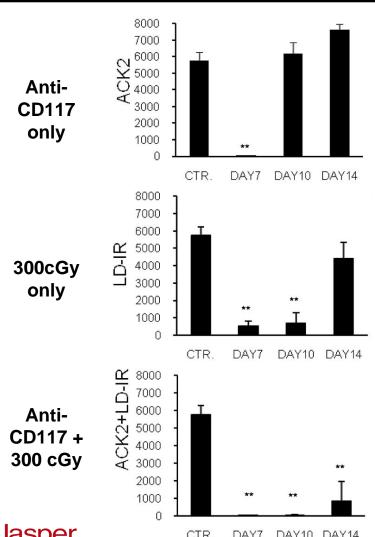
 CD117 also expressed on mast cells, germ cells, Cajal (GI) cells, melanocytes

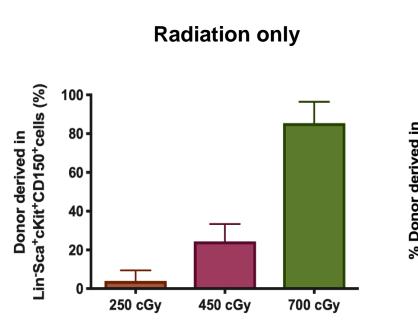

JSP191 alone causes robust and transient depletion of hematopoietic stem cells in non-human primates

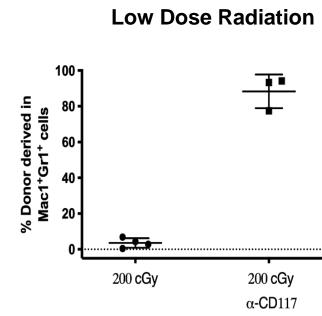
Anti-human CD117 antibody-mediated bone marrow niche clearance in non-human primates and humanized NSG mice

Hye-Sook Kwon, Aaron C. Logan, Akanksha Chhabra, Wendy W. Pang, Agnieszka Czechowicz, Keri Tate, Alan Le, Jessica Poyser, Roger Hollis, Benjamin V. Kelly, Donald B. Kohn, Irving L. Weissman, Susan S. Prohaska and Judith A. Shizuru

Depletion of hematopoietic stem cells in NHPs at 1.0 mg/kg






Blockade of CD117 is synergistic with low dose radiation leading to purified donor HSC engraftment in immunocompetent mouse models

Donor HSC Engraftment

Anti-CD117 +

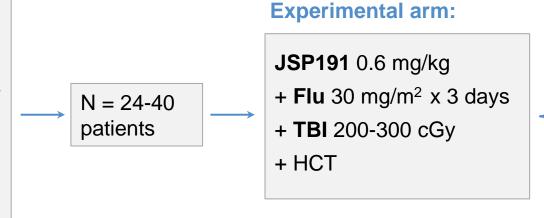

Xue et al Blood 2010; Chhabra et al. Sci Transl Med 2016; Pang et al. ASH 2019

JSP191 targets and depletes MDS/AML disease initiating cells and normal stem cells leading to successful transplant in mouse models

Anti-CD117 antibody depletes normal and myelodysplastic syndrome human hematopoietic stem cells in xenografted mice

Wendy W. Pang, Agnieszka Czechowicz, Aaron C. Logan, Rashmi Bhardwaj, Jessica Poyser, Christopher Y. Park, Irving L. Weissman and Judith A. Shizuru

AML / MDS Phase I Update & Discussion


Lori Muffly, M.D., Stanford University

Study design

Single-arm, open label, in AML/MDS patients not eligible for myeloablative conditioning regimens

Key inclusion criteria:

- Patients with MDS or AML
- ≥60 years or with
 Hematopoietic Cell
 Transplantation-Comorbidity
 Index (HCT-CI) ≥3
- HLA matched related or unrelated donor
- Patients with prior HCT were excluded

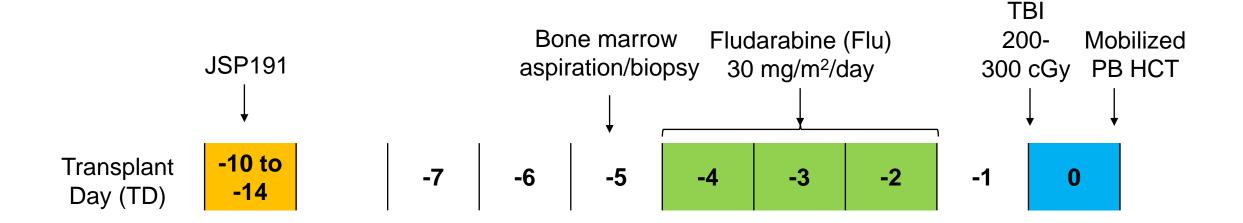
Assessments:

Primary endpoints:

- Safety and tolerability of JSP191/TBI/Flu
- JSP191 pharmacokinetics

Secondary endpoints:

- Engraftment and donor chimerism
- Relapse-free survival
- GVHD, Non-relapse mortality, and Overall Survival
- MRD clearance

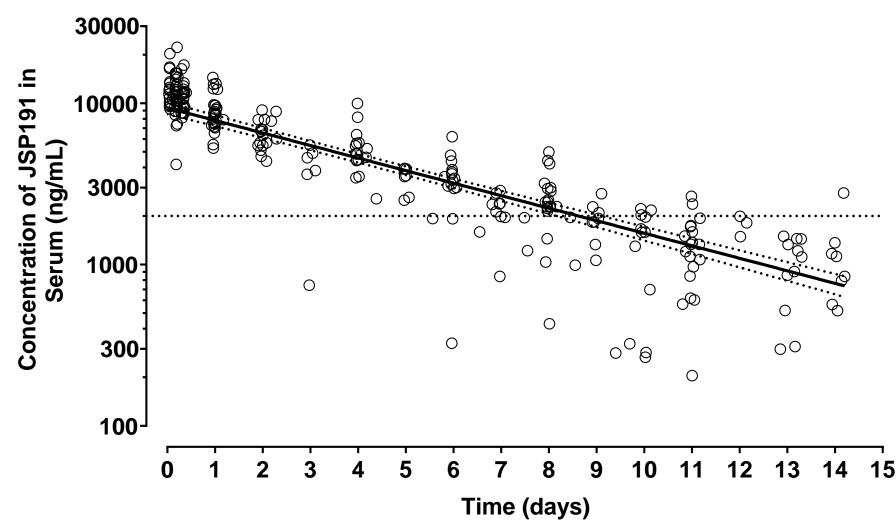

Exploratory endpoints:

 Depletion of HSPCs by JSP191

Treatment schema

Outpatient conditioning regimen

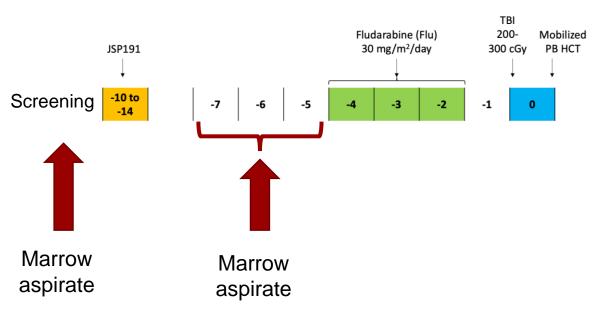
- Real-time PK measurements and modeling were used to determine Flu start date
- TBI increased from 200 to 300 cGy after first 7 subjects to aid lymphoablation
- GVHD prophylaxis: Tacrolimus, Sirolimus, Mycophenolate Mofetil (Sandmaier et al, Lancet Haematology 2019)


AML in CR & MDS patient characteristics

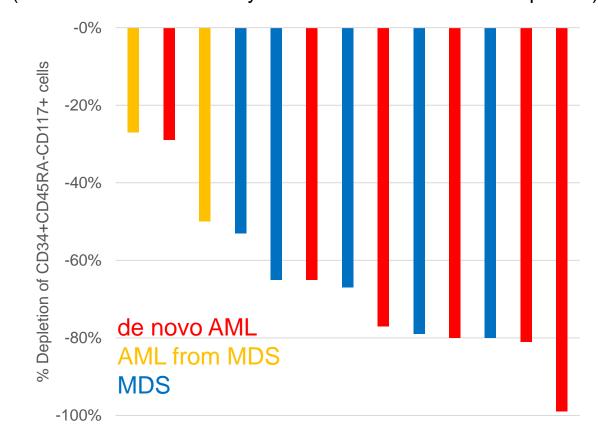
Characteristic	All Patients (N = 24)	Patients with AML (N=11)*	Patients with MDS (N = 13)
Median age (range) - year	70 (62-79)	69 (62-79)	70 (67-77)
Sex – no. (%)			
Male	18 (75%)	8 (73%)	10 (77%)
Female	6 (25%)	3 (27%)	3 (23%
Prior AML/MDS Therapy – no. (%)			
Untreated or growth factor supportive care only	3 (13%)	0 (0%)	3 (23%)
Hypomethylating agent-containing regimens only	13 (54%)	4 (36%)	9 (69%)
Anthracycline-based regimens (incl. liposomal formulations) only	3 (13%)	2 (18%)	1 (8%)
Multiple lines of therapy incl. both hypomethylating agent- and anthracycline-based regimens	5 (21%)	5 (45%)	0 (0%)
Donor Type – no. (%)			
Matched related donor	5 (21%)	1 (9%)	4 (33%)
Matched unrelated donor	19 (79%)	10 (91%)	9 (67%)
TBI dose – no. (%)			
200 cGy	7 (29%)	3 (27%)	4 (31%)
300 cGy	17 (71%)	8 (73%)	9 (69%)

*Patients with de novo AML (N = 8) & AML from MDS (N = 3)

0.6 mg/kg JSP191 Pharmacokinetics: Consistent and Predictable Clearance

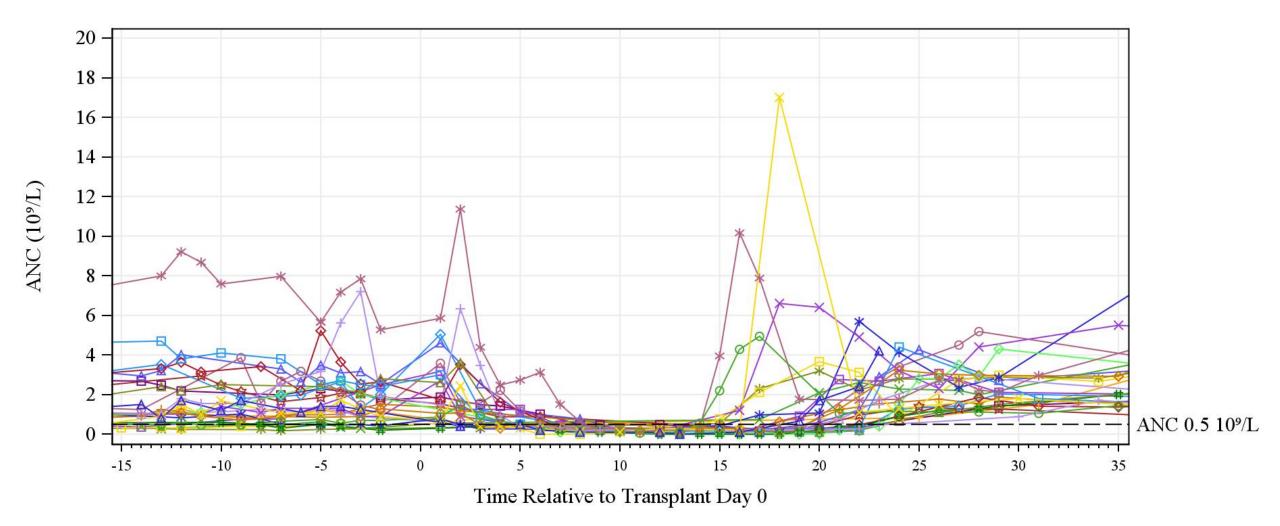

JSP191 AML/MDS Phase I results to date: Safety and tolerability to date

- No significant JSP191 infusion reactions
- No JSP191-related SAEs
- No primary graft failure (one case of secondary graft failure)

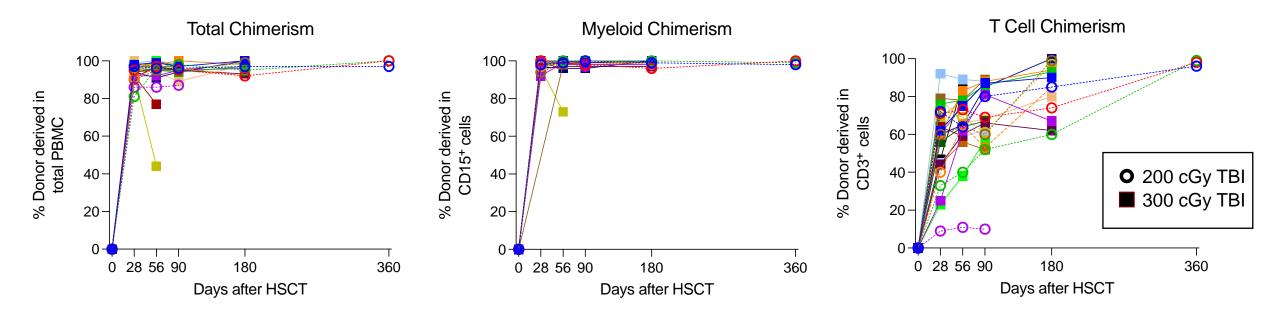


JSP191 Pharmacodynamics: Evaluation of JSP191 depletion of HSPCs in the bone marrow of AML and MDS subjects

Marrow aspirates collected at screening and prior to administration of Flu/TBI

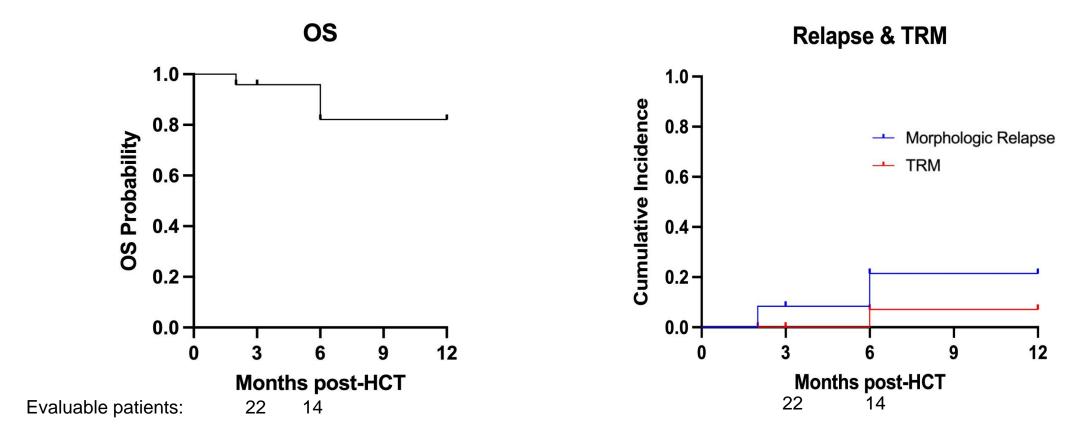


Average HSPC depletion of 66% (values do not necessarily reflect the nadir of HSPC depletion)



JSP191/Flu/TBI conditioning in all subjects dosed to date resulted in neutropenia followed by neutrophil engraftment by TD+26

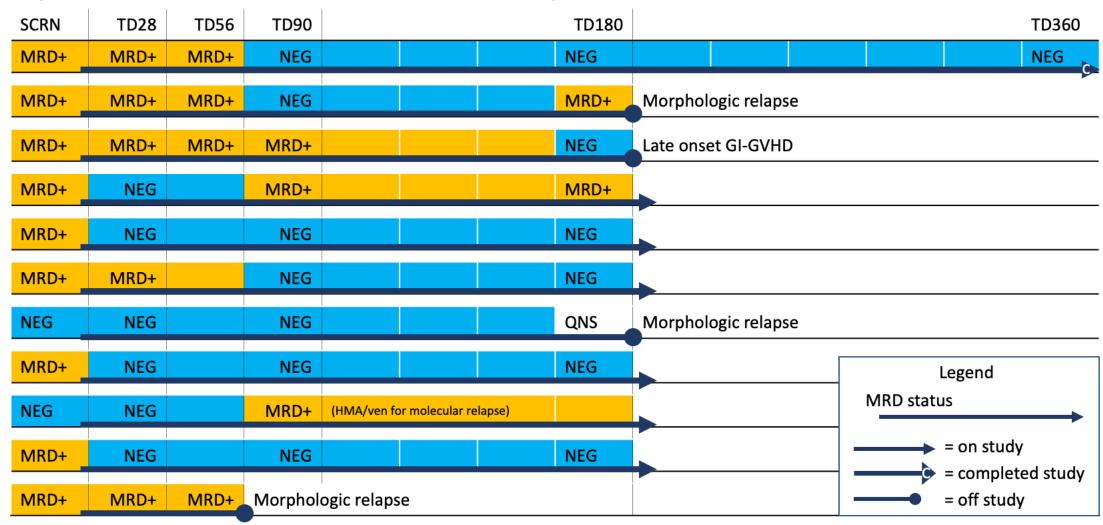
Donor Chimerism


Median Donor Chimerism:

	TD+28		TD+90			TD+180			
	Total	CD15	CD3	Total	CD15	CD3	Total	CD15	CD3
200 cGy TBI	91%	98%	60%	95%	98%	60%	97%	99%	85%
300 cGy TBI	95%	99%	60%	95%	99%	83%	98%	99%	89%

Outcomes & GVHD reported to date

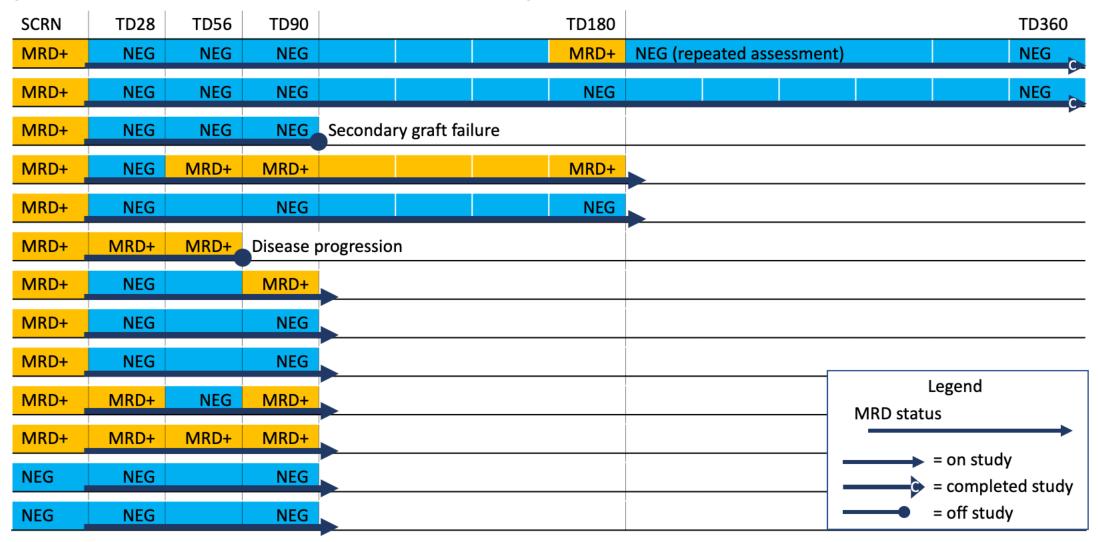
N = 24, median follow-up of 6 months (range 2-12 months)



- No classical grade II-IV acute GVHD reported to date
- 1 case of late onset grade III-IV acute GI GVHD reported to date
- Insufficient median follow up to draw conclusions regarding chronic GVHD

Multimodality Measurable Residual Disease (MRD) in patients with AML*

Cytogenetics, Flow Cytometry, Next Generation Sequencing



ifficient *Patients with de novo AML (N = 8) & AML from MDS (N = 3)

Multimodality Measurable Residual Disease (MRD) in patients with MDS

Cytogenetics, Flow Cytometry, Next Generation Sequencing

JSP191/Flu/TBI conditioning demonstrates clearance of measurable residual disease (MRD) by multiple modalities

MRD detection methods

- (1) Conventional Cytogenetics: detection of chromosomal abnormalities
- (2) Flow cytometry: detection of antigens on neoplastic cells compared to normal cells
- (3) Next generation sequencing: detection of genetic changes (Invivoscribe MyMRD panel)

Multi-modality MRD (most sensitive)

 12 of 20 (60%) JSP191 patients¹ cleared MRD by all three modalities at last follow up

MRD by flow cytometry (single modality)

- 9 of 11 (82%) JSP191 patients² cleared MRD by flow cytometry at last follow up
- 33 of 57 (58%) non-myeloablative (non-MAC) patients³ cleared MRD by flow cytometry in recent study of MRD dynamics in adult AML by Paras et al.

^[1] Muffly L et al. Tandem Meetings Transplantation and Cellular Therapy (TCT) 2022 April 23-26; Salt Lake City, UT

^[2] Jasper Internal Data

^[3] Paras G, Morsink LM, Othus M, et al. Conditioning intensity and peritransplant flow cytometric MRD dynamics in adult AML. Blood. 2022;139(11):1694-1706.

Summary of JSP191 AML/MDS Phase I data to date

- 0.6 mg/kg JSP191 PK is predictable and allows donor cell infusion 9-14 days after JSP191
- All patients engrafted with neutrophil recovery before Transplant Day +26
- Multimodality MRD clearance was observed in 12 of 20 evaluable patients at last follow-up
 - MRD clearance by flow alone observed in 9 of 11 patients
- JSP191/Flu/TBI is a novel conditioning regimen that appears safe, well-tolerated, has on target effects on HSPC depletion, permits full donor myeloid chimerism, and results in promising early MRD clearance

Acknowledgements

Jasper Therapeutics and the Investigators would like to thank the patients and families for participating in this clinical trial (NCT#04429191).

We would also like to thank the participating clinical sites, clinical staff, and collaborators.

SCID Phase I/II Update

Judith Shizuru, M.D., PhD., Jasper Co-Founder & Stanford University

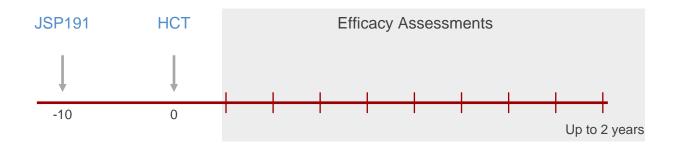
JSP191 for Severe Combined Immunodeficiency (SCID) patients who fail hematopoietic cell transplant

SCID is a genetic immune disorder that can be cured with hematopoietic cell transplant

Due to toxicity of current conditioning agents, many patients who fail transplant do not undergo a repeat procedure and rely on lifelong immune therapy

JSP191 can provide targeted, single-agent conditioning for SCID patients who have failed their first transplant

Jasper SCID Strategy:


- Establish Single-Agent Activity
- Potential Orphan Disease Voucher

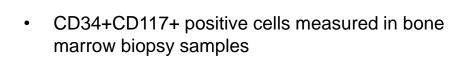
JSP191 first clinical study in ultra orphan indication, Severe Combined Immunodeficiency (SCID)

Single Arm Trial Design

Eligible second transplant or naïve subjects receive JSP191 prior to HCT

Inclusion Criteria

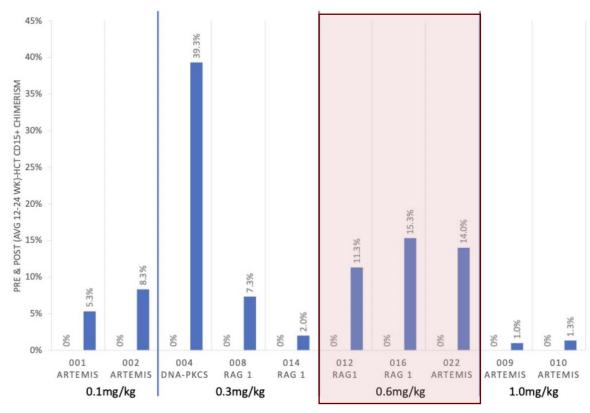
- SCID as defined by PIDTC criteria
- Prior donor must be available
- Prior transplant \geq 6 months
- Inadequate B cell engraftment
- Incomplete T cell reconstitution
- Clinical symptoms due to poor immune function


Endpoints

- Safety
- Donor stem cell engraftment
- Production of naïve CD4+ T cells
- Clinical benefit (Use of IVIG, infection, Vaccine response)

JSP191 single-agent HSPC depletion leads to donor cell engraftment in SCID retransplant patients

Stem Cell Depletion 100 -80-60-40-

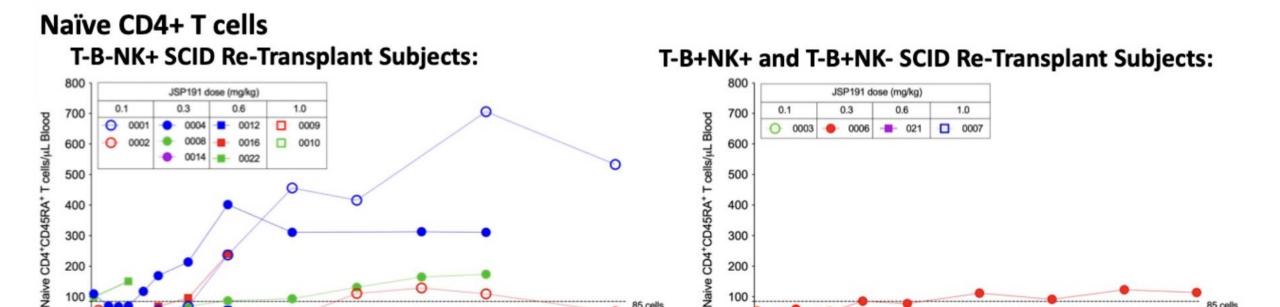

JSP191 dose (mg/kg)

0.6

0.3

0.1

- Average CD15+ myeloid donor chimerism at 12-24 weeks
- T- B- NK+ SCID re-transplant subjects



% CD34⁺CD117⁺ HSPC depletion by JSP191 in BM

20-

1.0

JSP191 single-agent conditioning leads to immune cell production in T- B- NK+ SCID re-transplant subjects

Increased naïve CD4+CD45RA+ T cell production (>85/µL) was observed in the majority of T-B-NK+ SCID re-transplant subjects conditioned with 0.1-0.6 mg/kg JSP191, versus T-B-NK+ SCID subjects conditioned with 1.0 mg/kg JSP191 and T-B+ SCID subjects.

208

HCT 0 4 812 18 24

130

156

78

Weeks Post Transplant

104

130

104

Weeks Post Transplant

156

Durable clinical benefit seen with JSP191 conditioned SCID re-transplant patients (T- B- NK+ patients)

Clinical Benefit

T-B-NK+ SCID Re-Transplant Subjects:

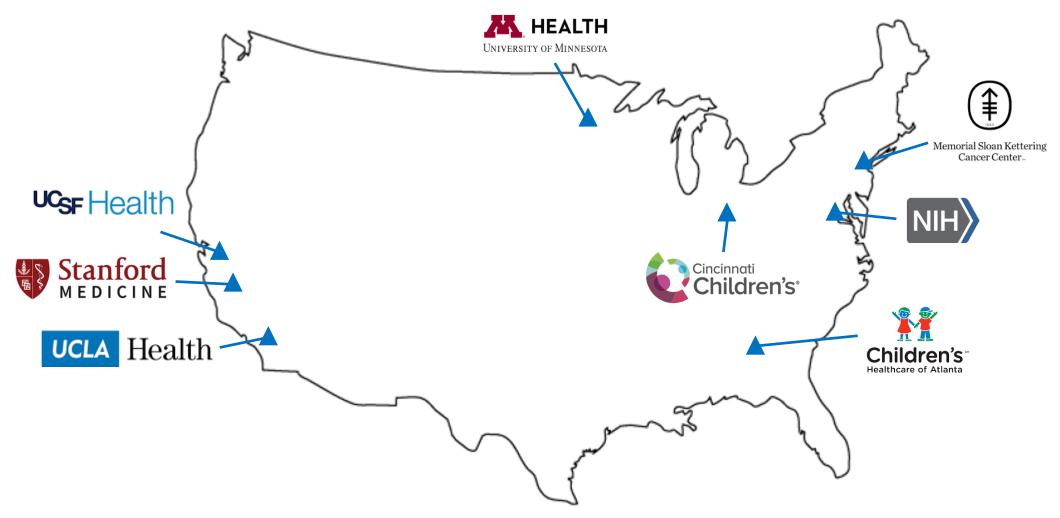
JSP191 Dose	ID	Genotype	Clinical Outcomes	Follow-up post-JSP191 HCT
0.1 mg/kg	0001	Artemis	IVIG reduced, Chronic norovirus enteritis resolved, Chronic URI resolved	Wk 208
0.1 mg/kg	0002	Artemis	Off IVIG, Ab response to vaccination	Wk 208
	0004	PRKDC	Continues on IVIG, Chronic URI resolved	Wk 156
0.3 mg/kg	8000	RAG1	Off IVIG, Ab response to vaccination	Wk 156
	0014	RAG1	Continues on IVIG, Improvement in chronic URI	Wk 104
	0012	RAG1	Continues on IVIG, Improvement in chronic URI	Wk 78
0.6 mg/kg	0016	RAG1	IVIG/SCIG dependent, Generating naïve B cells	Wk 52
	0022	Artemis	IVIG dependent, Generating naïve B cells	Wk 12
1.0 mg//c=	0009	Artemis	Off Study at 140 weeks – Deceased	Wk 104
1.0 mg/kg	0010	Artemis	Continues on IVIG, Persistent Chronic URI, Improvement in chronic norovirus enteritis	Wk 104

T-B+NK+ and T-B+NK- SCID Re-Transplant Subjects:

JSP191 Dose	ID	Genotype	Clinical Outcomes	Follow-up post-JSP191 HCT
0.1 mg/kg	0003	IL2RG	Off study at 156 weeks – Continues on IVIG, Persistent chronic norovirus enteritis	WK 156
0.3 mg/kg	0006	IL2RG	Continues on IVIG	Wk 156
0.6 mg/kg	0021	IL7R	Continues on IVIG	Wk 12
1.0 mg/kg	0007	IL2RG	Continues on IVIG, Persistent chronic URI	Wk 156

JSP191 SCID Phase I results to date: Safety and tolerability to date

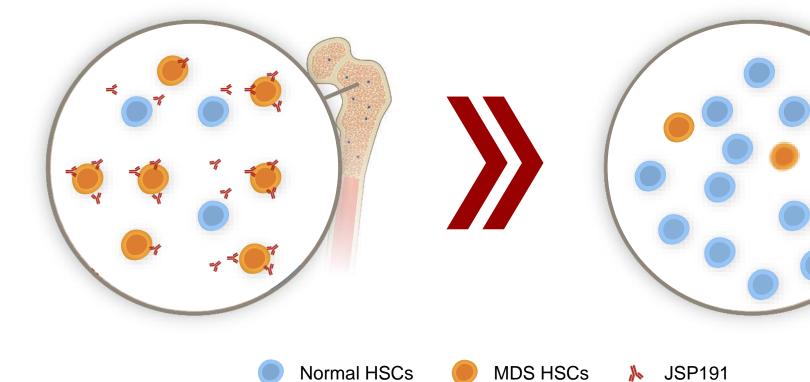
Clinical Safety


- No JSP191-related serious adverse events (SAEs)
- No myelosuppression
- No significant infusion reactions lacktriangle

Clinical Setting

- Protocol amended to allow for outpatient administration of JSP191
- Based on safety and successful HSC engraftment in re-transplant SCID subjects, the study of JSP191 has been expanded to include newly diagnosed infants with SCID

Jasper is currently enrolling at major academic transplant centers

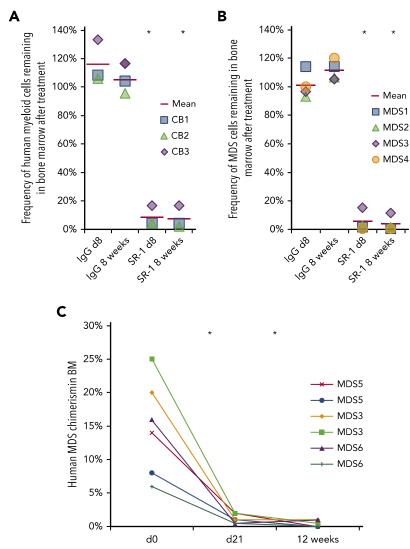


Scientific Rationale for JSP191 in Lower-Risk MDS

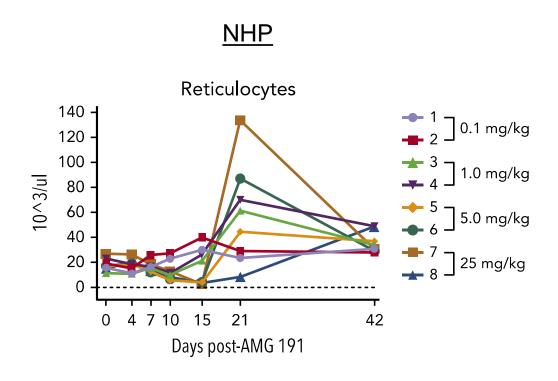
Wendy Pang, M.D., PhD., SVP Research & Translational Medicine Jasper Therapeutics

Based on MDS/AML clinical and preclinical data, JSP191 may preferentially deplete diseased HSCs, leaving healthy cells to re-establish marrow dominance

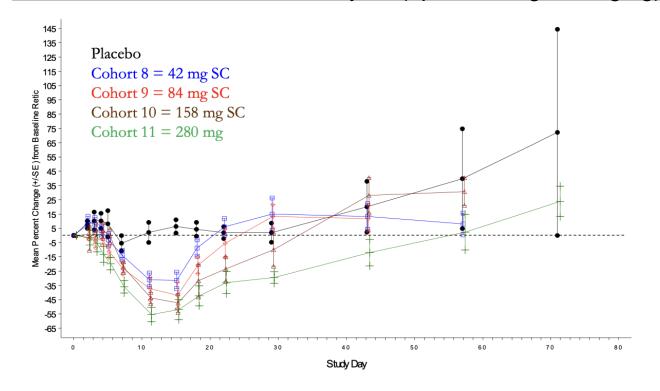
JSP191 administered in a LR-MDS patient



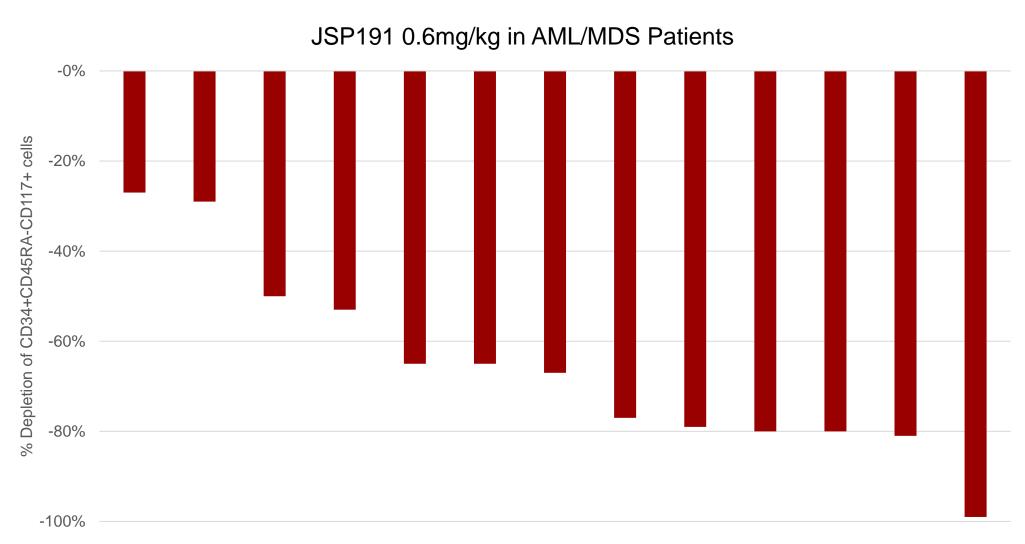
Shift of HSCs towards normal hematopoiesis


Pre-clinical data: JSP191 depletes normal and MDS Human HSCs in-vivo

Antibody that blocks SCF binding to CD117 (SR-1 and JSP191) depletes normal and MDS human HSCs *in vivo* in xenograft mouse models



Hematopoietic recovery after JSP191 administration in NHP and healthy human subjects, without transplant, evidenced by rebound of reticulocytes


AMGEN Phase I SAD Reticulocytes (up to 280mg / ~4mg/kg)*

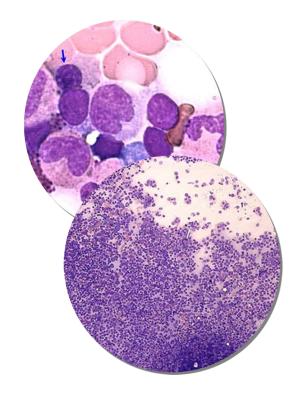
MDS/AML: Depletion of diseased HSPCs in bone marrow by single dose of JSP191

Data obtained prior to projected JSP191 nadir, or addition of fludarabine/TBI

Unmet Need in Lower-Risk MDS

David Sallman, M.D., Moffitt Cancer Center

Myelodysplastic Syndromes (MDS)


A group of malignant hematopoietic neoplasms characterized by¹

- Bone marrow failure with resultant cytopenia and related complications
- Evidence of clonality by cytogenetic abnormalities or somatic gene mutations.
- Dysplastic cytologic morphology is the hallmark of the disease
- Tendency to progress to AML

Overall incidence 3.7-4.8/100,000²

In US (true estimates ≈ 37,000-48,000)

Median age: 70 yrs; incidence: 34-47/100,000 >75 yrs³

How do I personalize treating lower-risk MDS?

- Identify those patients with estimated survival <2 years and in young/fit pts consider allogeneic stem cell transplant or clinical trials
- Asymptomatic and no profound cytopenia (Hgb >9.0 g/dl, platelets >30-50 and no recurrent neutropenic infections): **Observe**
- Isolated thrombocytopenia (10% of lower-risk MDS or less):
 - Eltrombopag
 - o ATG/CSA
 - HMA
- Recurrent Neutropenic Infections (ANC <500, very rare):
 - ATG/CSA
 - HMA
- Anemia (most common indication to treat):
 - Isolated anemia:
 - ESA
 - Lenalidomide
 - Luspatercept
 - HMA
 - ATG/CSA
 - ICT
 - Concomitant severe thrombocytopenia and neutropenia:
 - HMA
 - ATG/CSA

Risk Stratification – Revised IPSS (IPSS-R)

	IPSS-R Categories and associated scores					
Parameter Cytogenetic risk group						
	Very good	Good	Intermediate	Poor	Very poor	
	0	1	2	3	4	
Marrow blast proportion	<2%	2%-<5%	5%-10%	>10%		
	0	1	2	3		
Hemoglobin	≥10 g/dL	8-<10 g/dL	<8 g/dL			
	0	1	1.5			
Absolute neutrophil	\geq 0.8 × 10 ⁹ /L	$<0.8 \times 10^9/L$				
count	0	0.5				
Platelet count	$\geq 100 \times 10^9/L$	$50-100 \times 10^9/L$	$<50 \times 10^{9}/L$			
	0	0.5	1			

Overall Survival

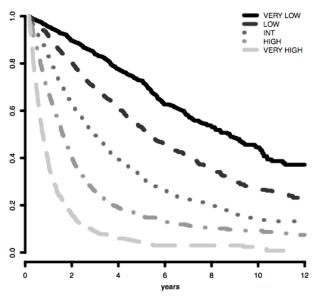


Figure 3. Survival based on IPSS-R prognostic risk-based categories. Survival related to MDS patients' prognostic risk categories (Kaplan-Meier curves, n=7012; Dxy 0.43, P<.001). The number of patients in each category and their proportional representation are shown in Table 1.

Progression to AML

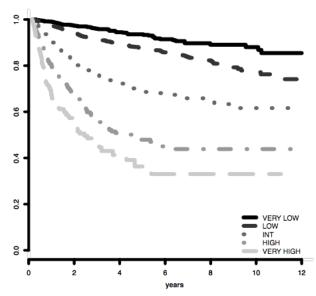
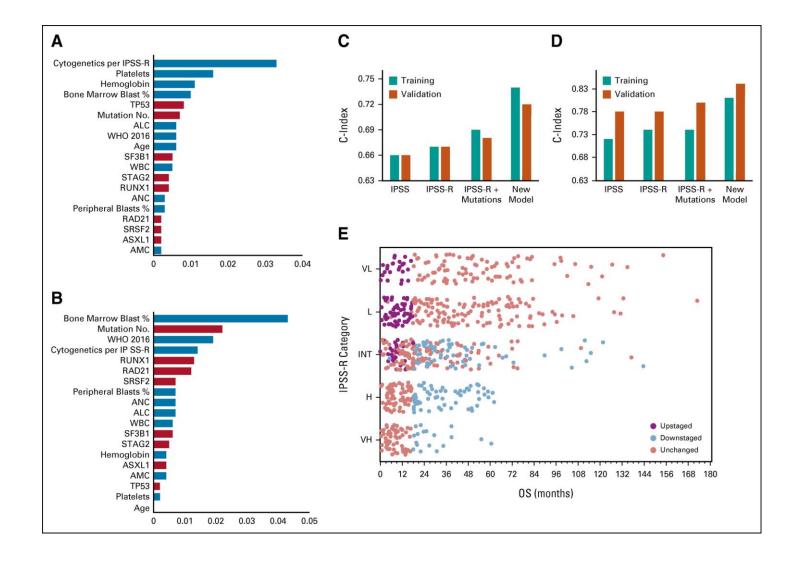
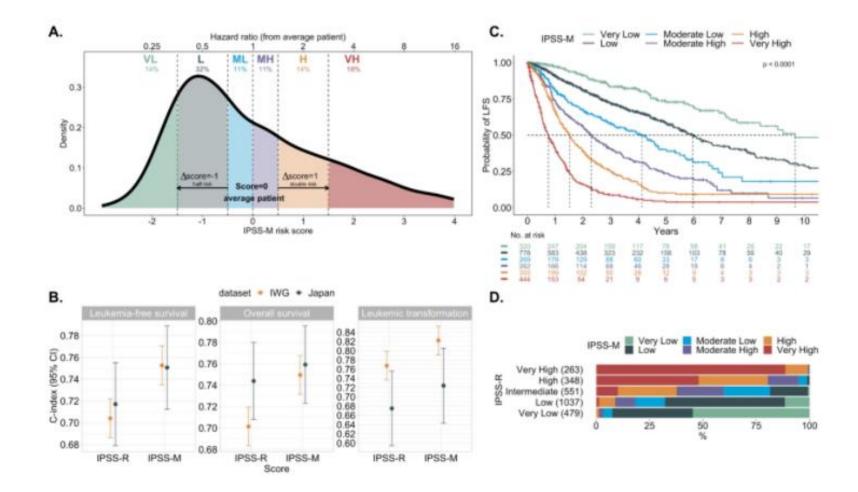
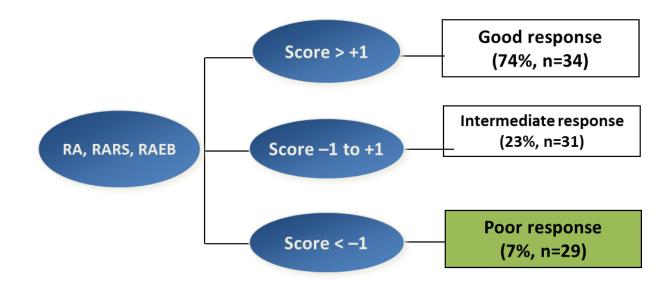



Figure 4. AML evolution based on IPSS-R prognostic risk-based categories. Progression to AML related to MDS patients' prognostic risk categories (Kaplan-Meier curves, n = 6485; Dxy 0.52, P< .001). The number of patients in each category and their proportional representation are shown in Table 1.

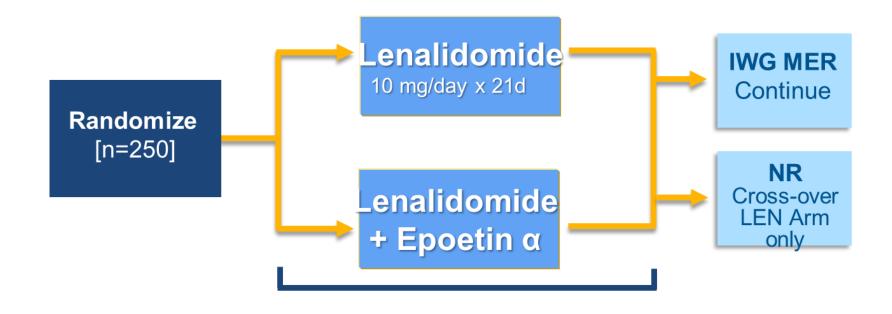


Personalized Model for MDS



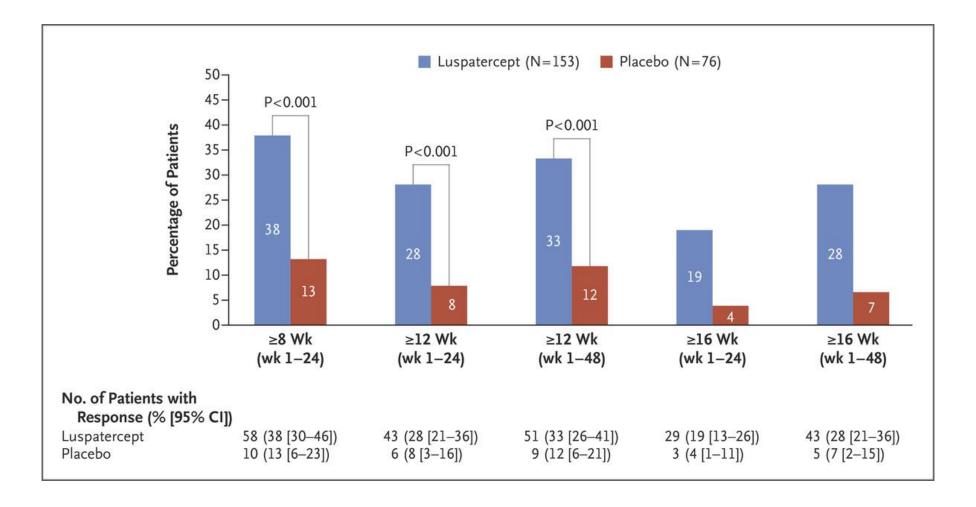
Molecular IPSS

When would you give erythropoiesis-stimulating agents (ESAs)?

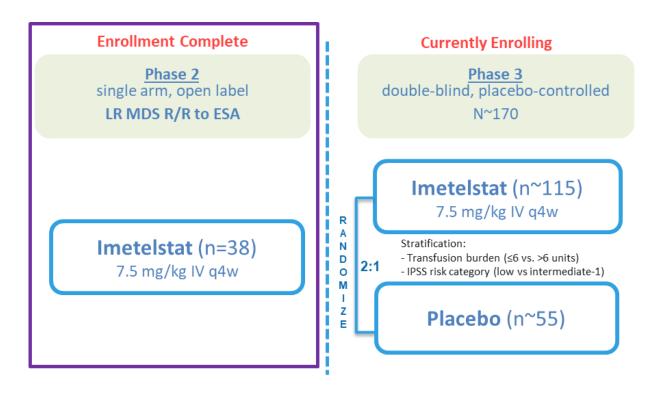


Treatment response score

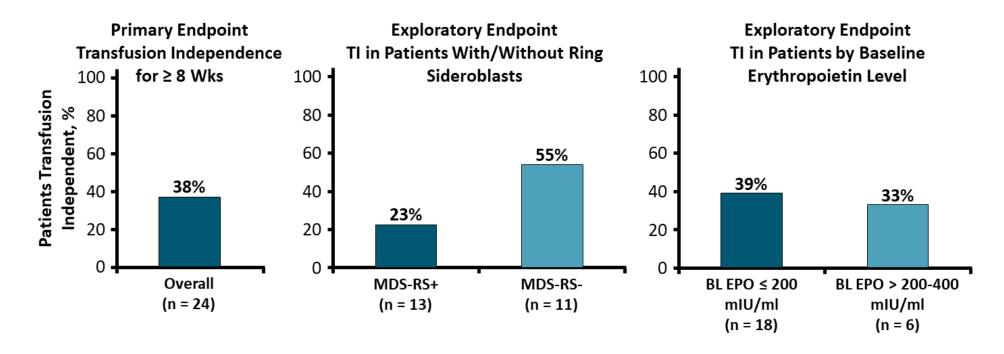
Epo level	<100	+2
U/L	100-500	+1
	>500	-3
Transfusion	<2 units/m	+2
U RBC/month	= or >2 units/m	–2


Len +/- EPO after ESA Failure (ECOG 2905)

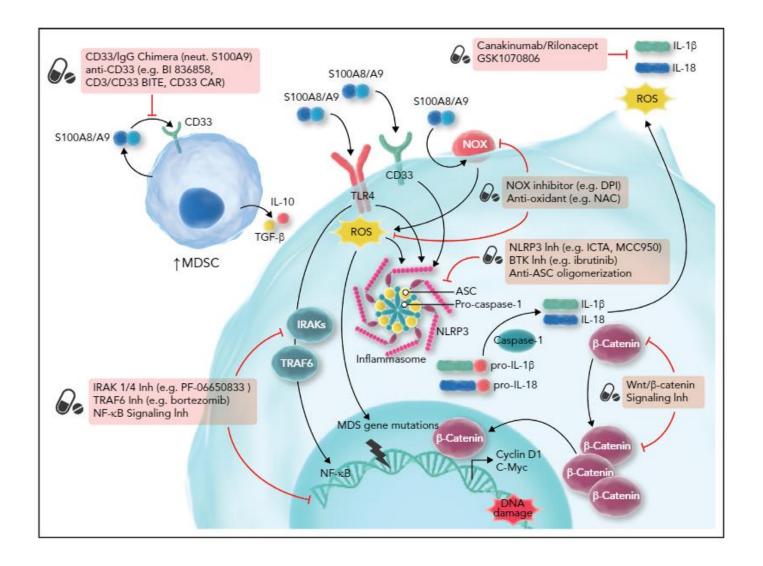
- Eligibility: Low/Int-1 IPSS, ESA failure or low response profile, Hgb <9.5 g/dL
- Major Erythroid Response (28.3% vs 12.5%); Duration of MER was 24 months vs 13 months


Luspatercept in ESA Failure MDS-RS

51


Imetelstat Phase 2/3 in Lower risk MDS

- Similar population as Medalist, any IPSS low or int-1; HMA/Len Naïve
- Primary endpoint 8 week TI; secondary 24 week TI
- Phase 2 with 42% TI and 29% maintained at 1 year. Cytopenias significant tox but reversible with holding drug


Roxadustat in LR MDS

- 78% (7/9) who achieved transfusion independence were receiving roxadustat 2.5 mg/kg
- During first 8 weeks of fixed-dose treatment, transfusion independence achieved by 25% of patients receiving roxadustat 1.5 mg/kg and 50% of patients receiving roxadustat 2.0 mg/kg
- P3 (NCT#) is ongoing with primary endpoint of TI at 8 weeks; ESA failure low-int by IPSS-R, exclude EPO > 400 for blinded part

Myelodysplastic Syndrome Inflammasome Targets Under Investigation

Predictors of Response to Len + EPO

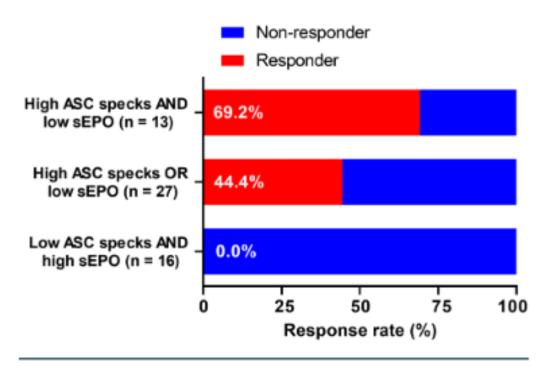


Figure 1. Erythroid response stratified by status of biomarkers. ASC: apoptosis-associated speck-like protein containing a CARD; sEPO, serum erythropoietin.

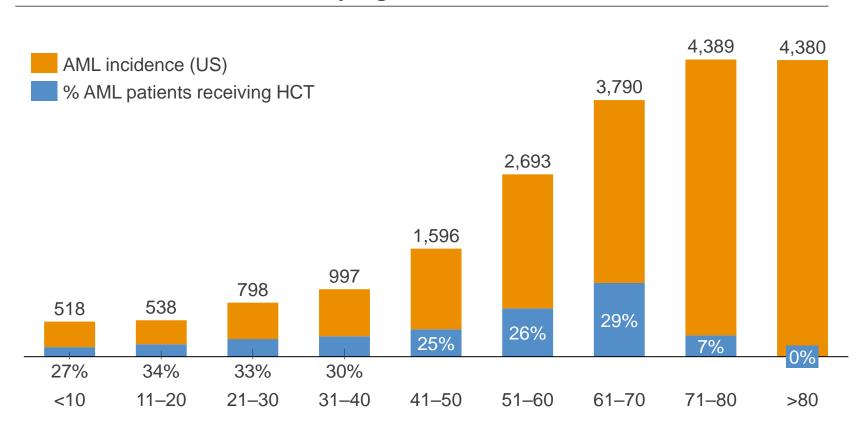
Q&A

Appendix

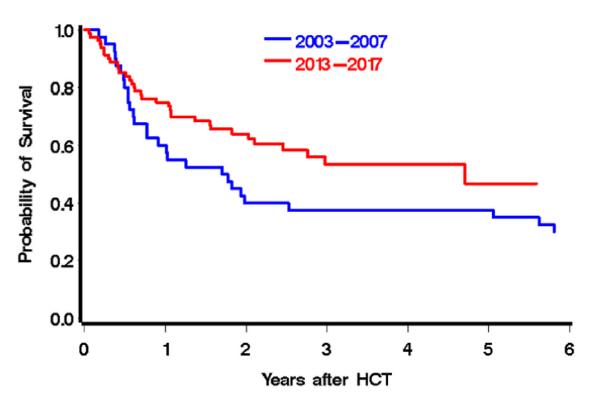
Outcomes & GvHD reported to date

	All Patients (N = 24)	Patients with AML (N=11)*	Patients with MDS (N = 13)
Median follow up (range) - months	6 (3-12)	6 (3-12)	3 (3-12)
Patients with event			
Death	3	2	1
Morphologic Relapse	4	3	1
Primary graft failure	0	0	0
Secondary graft failure	1	0	1
Transplant-related mortality			
GVHD	1#	1#	0
Organ toxicity	0	0	0
Infection	1#	1#	0

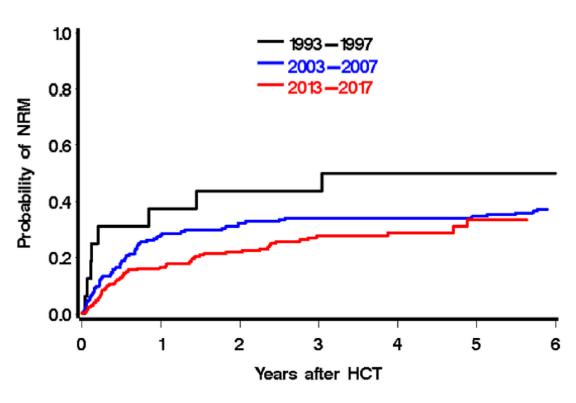
^{*}Patients with de novo AML (N = 8) & AML from MDS (N = 3)


- 1 case of grade 2 acute GI-GVHD (resolved); 1 case of grade 2 acute skin GVHD (resolved)
- No classical grade 3-4 acute GVHD reported to date; 1 case of late onset grade 3-4 acute GI GVHD reported to date
- Insufficient median follow up to draw conclusions regarding chronic GVHD

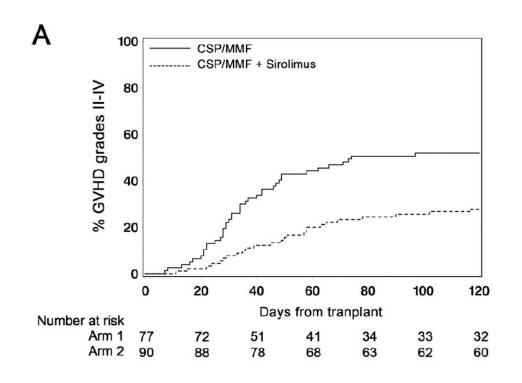
[#] Same patient

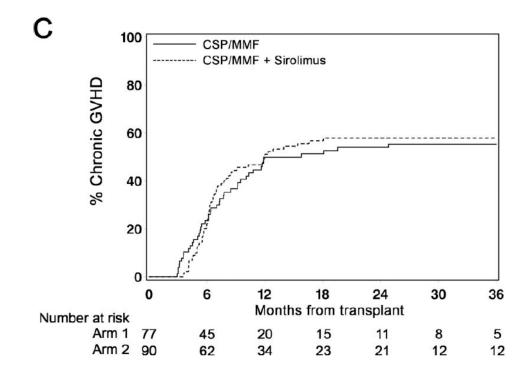

Older patients represent the majority of patients diagnosed with AML yet often cannot access transplant due to the toxicity of current regimens

Incidence of HCT for AML by Age in US



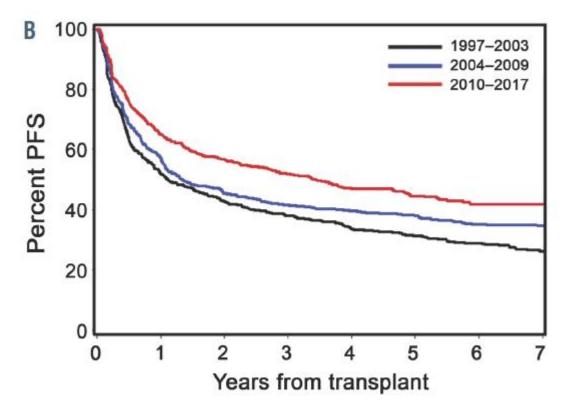
Survival outcomes following allo-HCT for AML patients over age 60


Overall survival (OS) at 1y: 75% Overall survival (OS) at 4y: 57%



Non-relapse mortality (NRM) at 1y: 16%

Risk of GVHD following allo-HCT for hematologic malignancy



Acute GVHD at 100d: 26-52%

Chronic GHVD at 1y: 49-50%

PFS and risk of relapse following allo-HCT for hematologic malignancy

100 1997-2003 2004-2009 2010-2017 80 Percent relapse 60 40 20 6 Years from transplant

Progression-free survival (PFS) at 1y: 65%

Risk of relapse at 1y: 25%

